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Abstract. We discuss lhe writhe of a self-avoiding polygon on a lanice. as a geomeuical 
measure of its entanglement complexity. We pmve a rigorous result about the dependence of 
the absolute value of the writhe on he number n of edges in the polygon, and use Monte Carlo 
methods lo estimate the dishibution of he writhe both for all polygons with n edges and for the 
subset of polygons that are trefoils. 

Polymer molecules in solution are typically very flexible objects which can be highly self- 
entangled, as well as being entangled with other molecules. It is important to understand and 
to characterize the extent of this entanglement complexity since it influences crystallization 
behaviour (de Gennes 1984) as well as rheological properties (Edwards 1967). 

Some work has appeared on measuring the topological entanglement complexity of a 
self-avoiding walk (Janse van Rensburg et ol 1992), but most attention has focussed on 
polygons (as models of ring polymers), where knotting can occur. Knotting can be detected 
using invariants such as the Alexander polynomial (Vologodskii et al 1974). Monte Carlo 
methods have been used to estimate the knot probability, and knot distribution, in various 
models of ring polymers (Vologodskii er al 1974, Michels and Wiegel 1986, Janse van 
Rensburg and Whittington 1990, Koniaris and Muthukumar 1991). In addition, there are 
rigorous results on the asymptotic behaviour which establish that almost all sufficiently 
long lattice polygons are knotted (Sumners and Whittington 1988, Pippenger 1989). and 
that many measures of knot complexity diverge as the number of edges in the polygon goes 
to infinity (Soteros et a1 1992). Similar asymptotic results are available for piece-wise linear 
polygons in R3 (Diao et al 1993). 

These approaches focus on the topology of the system but it is also useful to have 
geometric measures of the polygonal entanglement. One interesting geometric property 
is the writhe of the polygon, which has proved to be useful in modelling the degree of 
supercoiling in DNA (Bauer et ai 1980, White and Bauer 1986). Duplex DNA is modelled as 
a ribbon and there is an important conservation theorem (White 1969, Fuller 1971) relating 
the writhe of the centre line of a ribbon to the twist of the ribbon and the linking number 
of the two boundary curves. Although twist is only defined for a ribbon, writhe is well 
defined for a single curve. 

Consider any simple closed cuwe in R3, and project it onto Rz in some direction 2.  
In general the projection will have crossings and, for almost all projection directions, these 
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crossings will be transverse, so that we can associate a sign +1 or -1 with each crossing, 
as in figure 1. For this projection we f o m  the sum of these signed crossing numbers, 
S ( i ) .  and average over all projection directions 2. This average quantity is the writhe W 
of the curve (Fuller 1971). Writhe is a geometrical quantity (since it is not invariant under 
ambient isotopy) and is a real number which measures the extent to which the polygon is 
supercoiled. 

If we compute the writhe of each self-avoiding polygon (in the simple cubic lattice, 
say) with n edges, and average over the set of polygons, clearly the expected value of the 
writhe ( W )  is zero by symmetry. Consequently, we shall be interested in the expectation 
of the absolute value of the writhe (IWl), or in the expectation of its square (W2) or, more 
generally, in the distribution of W. 

The primary difficulty with the computation of writhe is that it involves averaging the 
sum of signed crossing numbers over all projection directions. For self-avoiding polygons in 
Z3, both the computation and theoretical considerations of writhe are greatly simplified by 
a theorem (Lacher and Sumners 1991) which reduces the writhe computation to the average 
of linking numbers of the given curve with four selected pushoffs. We make extensive use 
of this result 

Let P = (0.0.0) and Q = (0.1.0) on Z3. Both P and Q are on the boundary of the 
solid cube C of size 2 x 2 x 2 whose comers are 

KO. -1, I), (0,1, -1). (0, -1, -1). (0,1,1), (2, -1, I), (2,1, -1). (2, -1, -0, (2, I ,  1)). 
This cube is symmetric about the plane I = 0. Let i, j, k denote unit vectors in a right- 
handed coordinate system for Z3. Consider the self-avoiding polygon B which is contained 
in C and described as follows: begin at P, and take the following sequence of steps in the 
directions [i, i, -k. -j, -i, j ,  j ,  k, -i, - j } .  Let W ( B )  denote the writhe of curve B. 

Lemma I .  

W ( B )  =-I-+ . (1) 

Pro05 We use the theorem (Lacher and Sumners 1991) that the writhe of B is the average 
of the linking numbers of B with four curves pushed off into four mutually nonantipodal 
octants. We construct each pushoff of B by addition of one the following four vectors to each 
point of E: ( U I  = ( i + j + k ) / 2 ,  uz = ( - i + j + k ) / Z ,  y = (4- j f k ) / 2 ,  I J ~  = (i- j + k ) / Z ] .  
These vectors lie in the interiors of unit cubes in four non-mutually antipodal octants, all 
of which have a common edge. Let Ei denote the curve B + vi, 1 6 i < 4. Orient 
B, and each pushoff Bi in parallel with E. The linking numbers of B with the Ei are 

0 

If B* denotes the mirror image of B (reflected in the plane z = 0). then E* lies in C. 
and W(B*) = -i. 

Suppose now that A is a self-avoiding polygon which (given one of its two orientations) 
intersects cube C only in the self-avoiding walk B' which begins at P and ends at Q and 
traverses all the steps of B except the last one: that is, E' starts at P and consists of the 
steps {i, i ,  -k, - j ,  -i, j ,  j ,  k, -i]. We can truncate the polygon A by deleting the nine 
steps of B' and adding in the step i which connects P to Q on the boundary of C. This 
gives a new polygon A'. 

Lemma 2. 

L ( B ,  E l )  = L(B,  8 3 )  = L ( B ,  8 4 )  = +l, but L(B,  Bz) = -1. Hence W ( B )  =+I 2' 

2 

W(A)  = W(A') + W ( B ) .  
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Fwre 1. Positive and negative crossings are 
determined by a right-hand rule. 

Figure 2. The additivity of linking numbers. 

Proof Consider the pushoffs A1 of A and A; of A’. Figure 2 shows the projection down 
the z axis of these pushoffs near cube C; the remainder of each polygon has been suppressed. 
In figure 2, the (+) crossing ‘in the circle has curve A1 over curve A. By a small move 
inside cube. C, which does not alter the remainder of curves A and AI ,  the (+) crossing in 
the circle in figure. 2 can be changed to a (-) crossing (one in which AI goes under A), such 
that no other crossings between A and AI are changed. This gives a pair of curves which 
are isotopic (by an isotopy inside C) to the pair [A’, A;] .  In order to see this, first move A 
up through A1 at the circle, then perform a Reidemeister I move inside C to convert A1 to 
A;. This isotopy misses A. Then, perform a similar Reidemeister I move to’convert A to 
A’, missing A;. This proves that 

(3) L(A,  Ai )  = L(A‘, A;)  + 1 = L(A’, A; )  + L(E, E l )  . 

L ( A ,  Ai) = LfA‘, Ai) + 1 = L(A’, Ai) +i(B, El) 

’ 

A’similar computation for each of the other three-pushoff directions proves that 

i = 3.4 (4) 

but 

L(A,  Az) L(A’, A;) - 1 = L(A’, Ai)  + L(B,  Ez) . (5)  

0 Averaging these equations over the four pushoffs gives us the desired writhe result 

We are now ready to prove the main theorem of this letter. 

Theorem 1. For every function f(n) = o(&, the probability that the absolute value of the 
0 

froof The proof relies on a .combination of Kesten’s pattern theorem (Kesten 1963), and 
a coin tossing argument (Dim et nl 1993). We call the ball pair consisting of any translate 
of the self-avoiding walk 5’ and the surrounding cube C a pattern P = (C, 5’}. Let the 
pattern P* be the ball pair [C, E“} where E” is the mirror image of E’ (reflected in the 
plane z = 0). Kesten’s theorem implies that there exists a positive number E such that for all 
except exponentially few sufficiently long self-avoiding n-edge polygons, there are at least 
l ~ n J  pairwise disjoint translates of C each of which intersects the polygon in a translate of 
B’ or Bn. The distribution of the two patterns P and P* is analogous to tossing a coin, 
because B’ and B’” occur independently with probability f in each of the l ~ n J  translations 
of the cube C. Consequently the probability that 5’ occurs exactly k times among the LcnJ 

writhe is less than f(n) goes to zero as n goes to infinity. 
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Figure 3. Distribution of the writhe for self-avoiding 
polygons of length n = 400 (A) and n = I100 (0). 

F i r e  4. 7he dependence of I WI on n for self-avoiding 
polygons in the good solvent (4) and poor solvent (A) 
regimes. 

occurences of either B' or Bn is less than l/m for every k 6 LenJ provided that n is 
sufficiently large. (This can be shown by applying Stirling's approximation to the binomial 
distribution.) The fraction of polygons with at least L&zJ occurrences of either P or P* is 
at least 1 - e-yn for some positive y. For each of these polygons, the writhe is the sum of 
two terms (lemma 2). The first term is from the polygon formed by truncating Len] times 
(which is some fixed number), and the second is from the LenJ copies of B or B" formed 
in these truncations. If the total writhe is numerically less than f (n) then the contribution 
to the writhe from the LenJ occurrences of the pattems must be one of at most r2 f (n) + 11 
different values. Hence 

which goes to zero as R -+ m if f ( n )  = o c a .  0 

In order to obtain further information about the behaviour of the writhe, we have carried 
out some Monte Carlo calculations, generating polygons by a pivot algorithm (Madras et 
a1 1990) and computing their writhe by the pushoff technique (Lacher and Sumners 1991). 
In figure 3 we show the distribution of the writhe for polygons with n = 400 and with 
n = 1100 edges. As expected the distribution is symmetric about the origin and is sharply 
peaked there, becoming less sharply peaked as n increases. The result of theorem 1 strongly 
suggests that 

WO -ne (7) 

and this led us to plot log(lWI) against logn in figure 4. The evidence for linear behaviour 
is excellent and we estimate that a = 0.522 f 0.004. 

Self-avoiding polygons can be regarded as amodel of ring polymers in a good solvent In 
order to investigate how the writhe depends on solvent quality we have introduced a contact 
potential between neighbouring pairs of vertices as follows. For a given polygon we count 
the number of pairs of vertices in the polygon which are unit distance apart but not incident 
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Fwre 5. Distribution of wime in trefoils with n = 
4U9 in the poor solvent regime. 

on a common edge. Let this number be m. We associate a (reduced) energy (-mfi) with 
the polygon so that the polygon has a weight proportional to exp(m@). Increasingly positive 
values of Bcorrespond to decreasing solvent quality. We have calculated the distribution of 
the writhe for a range of values of n for ,3 = 0.26, which is close to the collapse transition 
for the cubic lattice (Janse van Rensburg et nl 1992). We plot log(lWI) against logn for 
this value of fi  in figure 4. The behaviour is again linear with a = 0.515 ztO.oo6.and is 
essentially parallel to the line for 6 = 0, the pure self-avoiding polygon (or good solvent) 
behaviour. This sugge$s that CL E 0.5 for a wide range of solvent quality. However, at 
fixed n the value of ( 1  Wl)  increases as the solvent quality decreases. 

The results discussed above are for the set of all polygons with a fixed value of n. We 
have also considered the subset of polygons which are trefoils. (We sampled these as a 
subsample of the polygons generated in the above calculation, by checking the value of 
the Alexander polynomial, evduated at f = - 1.) In figure 5 we show the distribution of 
the writhe for polygons with n = 403, p = 0.26, which are trefoils. The distribution is 
bimodal. This presumably reflects the fact that trefoils are chiral knots. A corresponding 
calculation for the figure eight knot (which is achiral) shows a unimodal distribution. 

In this letter we have reported the first calculations, as far as we are aware, of the 
distribution of writhe for self-avoiding polygons on a three. dimensional lattice. We proved 
a theorem giving a lower bound on the rate of increase of the absolute value of the writhe 
with increasing n, and gave Monte Carlo evidence that this bound may be best possible. 
In addition we have investigated the distribution of writhe for polygons as a function the 
contact potential b,  and have shown that the distribution is bimodal for trefoils. 

We are pleased to acknowledge financial support from NSF and from NSERC. 
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